China wholesaler CE Approved 0.1-0.2-0.4-0.75-1.5-2.2kw 18mm-22mm-28mm-32mm-40mm G3 Series Helical Gearbox double worm gearbox

Product Description

 

Product Description

MAIN FEATURES:
1) Made of high quality material,  non-rusting;Both flange and foot mounting available and suitable for all-round installation
2) Large output torque and high radiating efficiency
3)Precise grinding helical gear with Smooth running and low noise, no deformation,can work long time in dreadful condition
4)Nice appearance, durable service life and small volume, compact structure
5)Both 2 and 3 stage available with wide ratio range from 5 to 200
6)Different output shaft diameter available -40-50mm
7)Modular construction enlarge ratio from 5 to 1400

MAIN MATERIALS:
1)housing with aluminium alloyand cast iron material;
2)Output Shaft Material:20CrMnTi
3)Good quality no noise bearings to keep long service life
4)High performance oil seal to prevent from oil leakage

APPLICATIONS:
G3 Series helical gear motor are wide used for all kinds of automatic equipment, such as chip removal machine, conveyor, packaging equipment, woodworking machinery, farming equipment, slurry scraper ,dryer, mixer and so on.

Detailed Photos

Product Parameters

 

(n1=1400r/min  50hz)
norminal ratio 5 10 15 20 25 30 40 50 60 80 100 100 120 160   200   
0.1kw output shaft  Ø18 Ø22
n2* (r/min) 282 138 92 70 56 46 35 28 23 18 14 11 9 7
M2(Nm) 50hz 3.2 6.5 9.8 12.9 16.1 19.6 25.7 31.1 37.5 49.5 62.9 76.1 100.7 125.4
60hz 3 5 8 11 13 17 21 26 31 41 52 63 84 105
Fr1(N) 588 882 980 1180 1270 1370 1470 1570 2160 2450 2450 2450 2450 2450 2450
Fr2(N) 176
norminal ratio 5 10 15 20 25 30 40 50 60 80 100 100 120 160 200
0.2kw output shaft  Ø18 Ø22 Ø28
n2* (r/min) 282 138 92 70 56 45 35 29 23 18 14 13 12 8 7
M2(Nm) 50hz 6.5 12.6 19.1 26.3 32.6 38.9 50.4 63 75.6 100.8 103.9 125.4 150 200.4 250.7
60hz 5.4 10.5 16.6 21.9 27.1 32.4 42 52.5 63 84 86.6 104.5 125 167 208.9
Fr1(N) 588 882 980 1180 1270 1760 1860 1960 2160 2450 2450 2840 3330 3430 3430
Fr2(N) 196
norminal ratio 5 10 15 20 25 30 40 50 60 80 100 100 120 160 200
0.4kw output shaft  Ø22 Ø28 Ø32
n2* (r/min) 288 144 92 72 58 47 36 29 24 18 14 14 12 9 7
M2(Nm) 50hz 12.9 25 38.6 51.4 65.4 78.2 100.7 125.4 150 200.4 206.8 250.7 301.1 400.7 461.8
60hz 10.7 20.8 32.1 42.9 54.5 65.2 83.9 104.5 125 167 172.3 208.9 250.9 333.9 384.8
Fr1(N) 882 1180 1370 1470 1670 2550 2840 3140 3430 3430 3430 4900 5880 5880 5880
Fr2(N) 245
norminal ratio 5 10 15 20 25 30 40 50 60 80 100 100 120 160 200
0.75kw output shaft  Ø28 Ø32 Ø40
n2* (r/min) 278 140 94 69 58 46 35 29 24 18 14 14 11 9 7
M2(Nm) 50hz 24.6 48.2 72.9 97.5 122.1 145.7 187.5 235.7 282.9 376.1 387.9 439 527 703 764
60hz 20.5 40.2 60.7 81.3 201.8 121.4 156.3 196.4 235.7 313.4 323.2 366 439 585 732
Fr1(N) 1270 1760 2160 2350 2450 4571 4210 4610 5490 5880 5880 7060 7060 7060 7060
Fr2(N) 294
norminal ratio 5 10 15 20 25 30 40 50 60 80 100 100 120 160 200
1.5kw output shaft  Ø32 Ø40 Ø50
n2* (r/min) 280 140 93 70 55 47 34 27 24 17 14 13 12 8 7
M2(Nm) 50hz 48.2 97.5 145.7 193.9 242.1 272 351 439 527 703 724 878 1060 1230 1230
60hz 40.2 81.3 121.4 161.6 201.8 226 293 366 439 585 603 732 878 1170 1230
Fr1(N) 1760 2450 2840 3230 3820 5100 5880 7060 7060 7060 7060 9800 9800 9800 9800
Fr2(N) 343
norminal ratio 5 10 15 20 25 30 40 50 60 80 100        
2.2kw output shaft  Ø40 Ø50  
n2* (r/min) 272 136 95 68 54 45 36 28 24 18 14        
M2(Nm) 50hz 67 133 200 266 332 399 515 644 773 1571 1230        
60hz 56 111 167 221 277 332 429 537 644 858 1080        
Fr1(N) 2160 3140 3530 4571 4700 6960 7250 8620 9800 9800 9800        
Fr2(N) 392

Outline and mounting dimension:

G3FM: THREE PHASE GEAR MOTOR WITH FLANGE                                                                                       (n1=1400r/min)
Power kw output shaft ratio A F I J M O O1 P Q R S T U W X Y Y1
standard brake
0.1kw  Ø18 5–30-40-50 236 270 192.5 11 16.5 170 4 10 30 145 35 18 20.5 129 6 157 80 81
 Ø22 -160-200 262 296 197.5 11 19 185 4 12 40 148 47 22 24.5 129 6 171.5 89.5 83.5
0.2kw  Ø18 5- 267 270 192.5 11 16.5 170 4 10 30 145 35 18 20.5 129 6 161 80 81
 Ø22 -80-100 293 296 197.5 11 19 185 4 12 40 148 47 22 24.5 129 6 171.5 89.5 83.5
 Ø28 306 309.5 208.5 11 23.5 215 4 15 45 170 50 28 31 129 8 198.5 105.5 88
0.4kw  Ø22 5- 314 324.5 204 11 19 185 4 12 40 148 47 22 24.5 139 6 171.5 89.5 88.5
 Ø28 -80-100 330 337.5 215 11 23.5 215 4 15 45 170 50 28 31 139 8 198.5 105.5 93
 Ø32 349 357 229.5 13 28.5 250 4 15 55 180 60 32 35 139 10 234 126 98
0.75kw  Ø28 5- 350.5 343.5 227.5 11 23.5 215 4 15 45 170 50 28 31 159 8 198.5 105.5 103
 Ø32 -80-100 379.5 387 242 13 28.5 250 4 15 55 180 60 32 35 159 10 234 126 108
 Ø40 401.5 408.5 270 18 34 310 5 18 65 230 71 40 43 185 12 284 149 126.5
1.5kw  Ø32 5- 420.5 441 254 13 28.5 250 5 15 55 180 60 32 35 185 10 234 126 121
 Ø40 -80-100 457.5 478 270 18 34 310 5 18 65 230 71 40 43 185 12 284 149 126.5
 Ø50 485.5 506 300 22 40 360 5 25 75 270 83 50 53.5 185 14 325 173.5 132.5
2.2kw  Ø40 5- 466.5 487 270 18 34 310 5 18 65 230 71 40 43 185 12 284 149 126.5
 Ø50 -80-100 510.5 531 300 22 40 360 5 25 75 270 83 50 53.5 185 14 325 173.5 132.5


 

G3LM: THREE PHASE GEAR MOTOR WITH FOOT                                                                                                               (n1=1400r/min)
Power kw output shaft ratio A D E F J G H K P S T   U  V W   X  Y   Y1       
standard brake
0.1kw  Ø18 5–30-40-50 236 270 40 110 135 16.5 65 9 45 30 18 20.5 129 183 6 133 85 10
 Ø22 -160-200 262 296 65 130 155 19 90 11 55 40 22 24.5 129 193 6 139.5 90 12
0.2kw  Ø18 5- 267 270 40 110 135 16.5 65 9 45 30 18 20.5 129 183 6 133 85 10
 Ø22 -80-100 293 296 65 130 155 19 90 11 55 40 22 24.5 129 193 6 139.5 90 12
 Ø28 306 309.5 90 140 175 23.5 125 11 65 45 28 31 129 203 8 170 110 15
0.4kw  Ø22 5- 314 324.5 65 130 155 19 90 11 55 40 22 24.5 139 199.5 6 141.5 90 12
 Ø28 -80-100 330 337.5 90 140 175 23.5 125 11 65 45 28 31 139 210 8 170 110 15
 Ø32 349 357 130 170 208 28.5 170 13 70 55 32 35 139 226 10 198 130 18
0.75kw  Ø28 5- 350.5 343.5 90 140 175 23.5 125 11 65 45 28 31 159 222 8 170 110 15
 Ø32 -80-100 379.5 387 130 170 208 28.5 170 13 70 55 32 35 159 238.5 10 198 130 18
 Ø40 401.5 408.5 150 210 254 34 196 15 90 65 40 43 185 249 12 230 150 20
1.5kw  Ø32 5- 420.5 441 130 170 208 28.5 170 13 70 55 32 35 185 250.5 10 198 130 18
 Ø40 -80-100 457.5 478 150 210 254 34 196 15 90 65 40 43 185 260 12 230 150 20
 Ø50 485.5 506 160 230 290 40 210 18 100 75 50 53.5 185 288 14 265 170 25
2.2kw  Ø40 5- 466.5 487 150 210 254 34 196 15 90 65 40 43 185 260 12 230 150 20
 Ø50 -80-100 510.5 531 160 230 290 40 210 18 100 75 50 53.5 185 288 14 265 170 25


 

G3FS: IEC GEAR REDUCER WITH FOOT                                                                                                                           (n1=1400r/min)
Power kw output shaft ratio A B C F I J L M N O O1 P Q R S S1 T T1 W W1 X Y Y1
0.12kw  Ø18 5–30-40-50 147 95 115 154 11 16.5 4.5 170 140 4 10 30 145 35 18 11 20.5 12.8 6 4 163 80 86.5
 Ø22 -160-200 173 95 115 164 11 19 4.5 185 140 4 12 40 148 47 22 11 24.5 12.8 6 4 171.5 89.5 89
0.18kw  Ø18 5- 147 95 115 154 11 16.5 4.5 170 140 4 10 30 145 35 18 11 20.5 12.8 6 4 163 80 86.5
 Ø22 -80-100 173 95 115 164 11 19 4.5 185 140 4 12 40 148 47 22 11 24.5 12.8 6 4 171.5 89.5 89
 Ø28 186.5 95 115 186 11 23.5 4.5 215 140 4 15 45 170 50 28 11 31 12.8 8 4 198.5 105.5 93.5
0.37kw  Ø22 5- 181.5 110 130 164 11 19 4.5 185 160 4 12 40 148 47 22 14 24.5 16.3 6 5 201 89.5 99
 Ø28 -80-100 198 110 130 186 11 23.5 4.5 215 160 4 15 45 170 50 28 14 31 16.3 8 5 198.5 105.5 103.5
 Ø32 216.5 110 130 215 13 28.5 4.5 250 160 4 15 55 180 60 32 14 35 16.3 10 5 234 126 108.5
0.75kw  Ø28 5- 206.5 130 165 185 11 23.5 4.5 215 200 4 15 45 170 50 28 19 31 21.8 8 6 216.5 105.5 123.5
 Ø32 -80-100 235 130 165 215 13 28.5 4.5 250 200 4 15 55 180 60 32 19 35 21.8 10 6 236.5 126 128.5
 Ø40 260.5 130 165 270 18 34 4.5 310 200 5 18 65 230 71 40 19 43 21.8 12 8 284 149 134
1.5kw  Ø32 5- 252 130 165 215 13 28.5 4.5 250 200 5 15 55 180 60 32 24 35 27.3 10 8 236.5 126 128.5
 Ø40 -80-100 293.5 130 165 270 18 34 4.5 310 200 5 18 65 230 71 40 24 43 27.3 12 8 284 149 134
 Ø50 321.5 130 165 300 22 40 4.5 360 200 5 25 75 270 83 50 24 53.5 27.3 14 8 323.5 173.5 140
2.2kw  Ø40 5- 290 180 215 270 18 34 5.5 310 250 5 18 65 230 71 40 28 43 31.3 12 8 284 149 134
 Ø50 -80-100 334 180 215 300 22 40 5.5 360 250 5 25 75 270 83 50 28 53.5 31.3 14 8 323.5 173.5 140


 

G3LS: IEC GEAR REDUCER WITH FOOT                                                                                                                           (n1=1400r/min)  
Power kw output shaft ratio A B C D E F G H J K L N P S S1 T T1 W W1 X Y Y1 Z
0.12kw  Ø18 5–30-40-50 147 95 115 40 110 135 65 9 16.5 45 4.5 140 30 18 11 20.5 12.8 6 4 138.5 85 10 M8
 Ø22 -160-200 173 95 115 65 130 154 90 11 19 55 4.5 140 40 22 11 24.5 12.8 6 4 141 90 12 M8
0.18kw  Ø18 5- 147 95 115 40 110 135 65 9 16.5 45 4.5 140 30 18 11 20.5 12.8 6 4 138.5 85 10 M8
 Ø22 -80-100 173 95 115 65 130 154 90 11 19 55 4.5 140 40 22 11 24.5 12.8 6 4 141 90 12 M8
 Ø28 186.5 95 115 90 140 175 125 11 23.5 65 4.5 140 45 28 11 31 12.8 8 4 170 110 15 M8
0.37kw  Ø22 5- 181.5 110 130 65 130 154 90 11 19 55 4.5 160 40 22 14 24.5 16.3 6 5 151 90 12 M8
 Ø28 -80-100 198 110 130 90 140 175 125 11 23.5 65 4.5 160 45 28 14 31 16.3 8 5 170 110 15 M8
 Ø32 216.5 110 130 130 170 208 170 13 28.5 70 4.5 160 55 32 14 35 16.3 10 5 198 130 18 M8
0.75kw  Ø28 5- 206.5 130 165 90 140 175 125 11 23.5 65 4.5 200 45 28 19 31 21.8 8 6 186.5 110 15 M10
 Ø32 -80-100 235 130 165 130 170 208 170 13 28.5 70 4.5 200 55 32 19 35 21.8 10 6 201.5 130 18 M10
 Ø40 260.5 130 165 150 210 254 196 15 34 90 4.5 200 65 40 19 43 21.8 12 8 230 150 20 M10
1.5kw  Ø32 5- 252 130 165 130 170 208 170 13 28.5 70 4.5 200 55 32 24 35 27.3 10 8 201.5 130 18 M10
 Ø40 -80-100 293.5 130 165 150 210 254 196 15 34 90 4.5 200 65 40 24 43 27.3 12 8 230 150 20 M10
 Ø50 321.5 130 165 160 230 290 210 18 40 100 4.5 200 75 50 24 53.5 27.3 14 8 265 170 25 M10
2.2kw  Ø40 5- 290 180 215 150 210 254 196 15 34 90 5.5 250 65 40 28 43 31.3 12 8 230 150 20 M12
 Ø50 -80-100 334 180 215 160 230 290 210 18 40 100 5.5 250 75 50 28 53.5 31.3 14 8 265 170 25 M12

Company Profile

We are a professional reducer manufacturer located in HangZhou, ZHangZhoug province.Our leading products is  full range of RV571-150 worm reducers , also supplied GKM hypoid helical gearbox, GRC inline helical gearbox, PC units, UDL Variators and AC Motors, G3 helical gear motor.Products are widely used for applications such as: foodstuffs, ceramics, packing, chemicals, pharmacy, plastics, paper-making, construction machinery, metallurgic mine, environmental protection engineering, and all kinds of automatic lines, and assembly lines.With fast delivery, superior after-sales service, advanced producing facility, our products sell well  both at home and abroad. We have exported our reducers to Southeast Asia, Eastern Europe and the Middle East and so on.Our aim is to develop and innovate on the basis of high quality, and create a good reputation for reducers.

Workshop:

 

Exhibition

ZheJiang PTC Fair:

Packaging & Shipping

After Sales Service

1.Maintenance Time and Warranty:Within 1 year after receiving goods.
2.Other ServiceIncluding modeling selection guide, installation guide, and problem resolution guide, etc

FAQ

1.Q:Can you make as per customer drawing?
A: Yes, we offer customized service for customers accordingly. We can use customer’s nameplate for gearboxes.
2.Q:What is your terms of payment ?
A: 30% deposit before production,balance T/T before delivery.
3.Q:Are you a trading company or manufacturer?
A:We are a manufacurer with advanced equipment and experienced workers.
4.Q:What’s your production capacity?
A:4000-5000 PCS/MONTH
5.Q:Free sample is available or not?
A:Yes, we can supply free sample if customer agree to pay for the courier cost
6.Q:Do you have any certificate?
A:Yes, we have CE certificate and SGS certificate report.

Contact information:
Ms Lingel Pan
For any questions just feel free ton contact me. Many thanks for your kind attention to our company!

Application: Motor, Machinery, Marine, Agricultural Machinery, Power Transmission Applications
Function: Distribution Power, Clutch, Change Drive Torque, Change Drive Direction, Speed Changing, Speed Reduction
Layout: Coaxial
Hardness: Hardened Tooth Surface
Installation: Vertical or Horizontal Type
Step: Two Stage- Three Stage
Samples:
US$ 35/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

worm reducer

What is a worm gear reducer gearbox?

A worm gear reducer gearbox is a mechanical device that uses a worm gear and a worm to reduce the speed of a rotating shaft. The gear reducer gearbox can increase the output torque of the engine according to the gear ratio. This type of gear reducer gearbox is characterized by its flexibility and compact size. It also increases the strength and efficiency of the drive.

Hollow shaft worm gear reducer gearbox

The hollow shaft worm gear reducer gearbox is an additional output shaft connecting various motors and other gearboxes. They can be installed horizontally or vertically. Depending on size and scale, they can be used with gearboxes from 4GN to 5GX.
Worm gear reducer gearboxes are usually used in combination with helical gear reducer gearboxes. The latter is mounted on the input side of the worm gear reducer gearbox and is a great way to reduce the speed of high output motors. The gear reducer gearbox has high efficiency, low speed operation, low noise, low vibration and low energy consumption.
Worm gear reducer gearboxes are made of hard steel or non-ferrous metals, increasing their efficiency. However, gears are not indestructible, and failure to keep running can cause the gear oil to rust or emulsify. This is due to moisture condensation that occurs during the operation and shutdown of the reducer gearbox. The assembly process and quality of the bearing are important factors to prevent condensation.
Hollow shaft worm gear reducer gearboxes can be used in a variety of applications. They are commonly used in machine tools, variable speed drives and automotive applications. However, they are not suitable for continuous operation. If you plan to use a hollow shaft worm gear reducer gearbox, be sure to choose the correct one according to your requirements.

Double throat worm gear

Worm gear reducer gearboxes use a worm gear as the input gear. An electric motor or sprocket drives the worm, which is supported by anti-friction roller bearings. Worm gears are prone to wear due to the high friction in the gear teeth. This leads to corrosion of the confinement surfaces of the gears.
The pitch diameter and working depth of the worm gear are important. The pitch circle diameter is the diameter of the imaginary circle in which the worm and the gear mesh. Working depth is the maximum amount of worm thread that extends into the backlash. Throat diameter is the diameter of the circle at the lowest point of the worm gear face.
When the friction angle between the worm and the gear exceeds the lead angle of the worm, the worm gear is self-locking. This feature is useful for lifting equipment, but may be detrimental to systems that require reverse sensitivity. In these systems, the self-locking ability of the gears is a key limitation.
The double throat worm gear provides the tightest connection between the worm and the gear. The worm gear must be installed correctly to ensure maximum efficiency. One way to install the worm gear assembly is through a keyway. The keyway prevents the shaft from rotating, which is critical for transmitting torque. Then attach the gear to the hub using the set screw.
The axial and circumferential pitch of the worm gear should match the pitch diameter of the larger gear. Single-throat worm gears are single-threaded, and double-throat worm gears are double-throat. A single thread design advances one tooth, while a double thread design advances two teeth. The number of threads should match the number of mating gears.
worm reducer

Self-locking function

One of the most prominent features of a worm reducer gearbox is its self-locking function, which prevents the input and output shafts from being interchanged. The self-locking function is ideal for industrial applications where large gear reduction ratios are required without enlarging the gear box.
The self-locking function of a worm reducer gearbox can be achieved by choosing the right type of worm gear. However, it should be noted that this feature is not available in all types of worm gear reducer gearboxes. Worm gears are self-locking only when a specific speed ratio is reached. When the speed ratio is too small, the self-locking function will not work effectively.
Self-locking status of a worm reducer gearbox is determined by the lead, pressure, and coefficient of friction. In the early twentieth century, cars had a tendency to pull the steering toward the side with a flat tire. A worm drive reduced this tendency by reducing frictional forces and transmitting steering force to the wheel, which aids in steering and reduces wear and tear.
A self-locking worm reducer gearbox is a simple-machine with low mechanical efficiency. It is self-locking when the work at one end is greater than the work at the other. If the mechanical efficiency of a worm reducer gearbox is less than 50%, the friction will result in losses. In addition, the self-locking function is not applicable when the drive is reversed. This characteristic makes self-locking worm gears ideal for hoisting and lowering applications.
Another feature of a worm reducer gearbox is its ability to reduce axially. Worm gears can be double-lead or single-lead, and it is possible to adjust their backlash to compensate for tooth wear.

Heat generated by worm gears

Worm gears generate considerable amounts of heat. It is essential to reduce this heat to improve the performance of the gears. This heat can be mitigated by designing the worms with smoother surfaces. In general, the speed at which worm gears mesh should be in the range of 20 to 24 rms.
There are many approaches for calculating worm gear efficiency. However, no other approach uses an automatic approach to building the thermal network. The other methods either abstractly investigate the gearbox as an isothermal system or build the TNM statically. This paper describes a new method for automatically calculating heat balance and efficiency for worm gears.
Heat generated by worm gears is a significant source of power loss. Worm gears are typically characterized by high sliding speeds in their tooth contacts, which causes high frictional heat and increased thermal stresses. As a result, accurate calculations are necessary to ensure optimal operation. In order to determine the efficiency of a gearbox system, manufacturers often use the simulation program WTplus to calculate heat loss and efficiency. The heat balance calculation is achieved by adding the no-load and load-dependent power losses of the gearbox.
Worm gears require a special type of lubricant. A synthetic oil that is non-magnetic and has a low friction coefficient is used. However, the oil is only one of the options for lubricating worm gears. In order to extend the life of worm gears, you should also consider adding a natural additive to the lubricant.
Worm gears can have a very high reduction ratio. They can achieve massive reductions with little effort, compared to conventional gearsets which require multiple reductions. Worm gears also have fewer moving parts and places for failure than conventional gears. One disadvantage of worm gears is that they are not reversible, which limits their efficiency.
worm reducer

Size of worm gear reducer gearbox

Worm gear reducer gearboxes can be used to decrease the speed of a rotating shaft. They are usually designed with two shafts at right angles. The worm wheel acts as both the pinion and rack. The central cross section forms the boundary between the advancing and receding sides of the worm gear.
The output gear of a worm gear reducer gearbox has a small diameter compared to the input gear. This allows for low-speed operation while producing a high-torque output. This makes worm gear reducer gearboxes great for space-saving applications. They also have low initial costs.
Worm gear reducer gearboxes are one of the most popular types of speed reducer gearboxes. They can be small and powerful and are often used in power transmission systems. These units can be used in elevators, conveyor belts, security gates, and medical equipment. Worm gearing is often found in small and large sized machines.
Worm gears can also be adjusted. A dual-lead worm gear has a different lead on the left and right tooth surfaces. This allows for axial movement of the worm and can also be adjusted to reduce backlash. A backlash adjustment may be necessary as the worm wears down. In some cases, this backlash can be adjusted by adjusting the center distance between the worm gear.
The size of worm gear reducer gearbox depends on its function. For example, if the worm gear is used to reduce the speed of an automobile, it should be a model that can be installed in a small car.

China wholesaler CE Approved 0.1-0.2-0.4-0.75-1.5-2.2kw 18mm-22mm-28mm-32mm-40mm G3 Series Helical Gearbox   double worm gearboxChina wholesaler CE Approved 0.1-0.2-0.4-0.75-1.5-2.2kw 18mm-22mm-28mm-32mm-40mm G3 Series Helical Gearbox   double worm gearbox
editor by CX 2023-05-29

Recent Posts