China supplier JIS Type Rigging Screws F-3403

Product Description

 

    Table1      
No.      Component                    Material  
1 Screw rod                  JIS G 4051-S 25C  
2  Fork        
3 Dead eye       JIS G 5501-FC15  
4 Joining HangZhou and hexagon nut       JIS G 4051-S 25C  
5 Check plate       Steel plate  
6 Fixing bolt       Steel bar  
7 Washer       Steel plate  
          (mm)
Size Wire Rope Use Length W.L.L. Self-
Diameter Max Min (kN) Weight(kg)
14 14 700 488 20.6  6.0 
16 16 770 538 25.5  8.6 
18 18 836 590 32.4  11.6 
22 20 or 22.4 908 638 50.0  14.8 
24 24 968 688 57.9  19.4 
25 25 1004 720 67.7  23.9 
30 28 or 30 1074 770 90.2  30.3 
32 32 1124 810 103.0  36.3 
34 34 1176 850 112.8  43.3 
36 36 1238 900 127.5  51.3 
38 38 1284 938 142.2  60.1 
40 40 1344 988 161.8  70.9 
42 42.5 1444 1068 181.4  93.8 
45 45 1482 1100 206.0  105.2 
48 47.5 1536 1140 226.0  117.2 
50 50 1556 1160 250.1  124.3 

HangZhou Xinquanxi Metal Products Co., Ltd. was established in 2001 (formerly known as HangZhou Quanxi Rigging Hardware  Co., LTD.), located in Wangyanzhuang North Village, Lancun Town, Xihu (West Lake) Dis. District, HangZhou city.  In the early stage of establishment, the company mainly engaged in the production and sales of JIS turnbuckles and forging shackle, and successfully entered the Japanese market with high quality products and established the foreign trade Department.  With the continuous development of the company’s business, in September 2019, it merged with HangZhou Ruihongjie Industry and Trade Co., LTD., and changed the company name to HangZhou Xinquanxi Metal Products Co., LTD.  At the same time, the business scope has gradually expanded, the main production and operation of  rigging, wire rope connection parts, precision machining, Pole line hardware, Marine and automotive connection parts, all kinds of forging, sheet metal, stamping, casting  and other products.  

Main products:  
Rigging: turnbuckle (Jis open body, 1480 forging turnbuckle, US type  forging turnbuckle,Rigging Screw),  forging shackle, eye bolt and eye nut, forged hook,  various sets of rings, D ring, master ring, snap hook,Pulley Block, etc.;  
Corner code, expansion bolt, seismic support, guardrail and other building materials.  
Casting pipes, manhole covers, road piles, container buttons, anchors, all kinds of breeding equipment and other casting products. 
FAQ
1.Are you a factory or a trading company?   
      We have our own foundry and forging factory. The forging plant has 4 production lines and a history of more than 20 years;Foundry has a history of more than 30 years.
2.How do you control your quality?   
      1: Control during r&d at the beginning of production
      2:Production process control
      3:Dimensional control
      4:Tensile tests
      5:Quality inspection before delivery
3.Can we have our product markings on it?
      Yes, we can add product markings according to your requirements.
4.How about packing?
      Woven bag,carton,plywood pallet or by customer requirements.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Material: 25#,Q235
Type: Jaw & Jaw Turnbuckle
Usage: Industrial, Household
Samples:
US$ 5.5/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

worm screw

Can worm screws be used for high torque applications?

Yes, worm screws can be used for high torque applications. The design of a worm screw mechanism allows for efficient torque transmission and multiplication, making it suitable for applications that require high torque output. Here are some key points to consider regarding the use of worm screws in high torque applications:

  1. Gear Reduction: One of the primary advantages of a worm screw mechanism is its ability to provide a significant gear reduction in a single stage. The helical threads of the worm screw and the meshing teeth of the worm wheel create a high reduction ratio, which results in a lower output speed and higher output torque. This gear reduction capability allows worm screws to generate and transmit substantial torque, making them well-suited for high torque applications.
  2. Efficiency: While worm screws can provide high torque output, it’s important to consider the mechanical efficiency of the system. The efficiency of a worm screw mechanism can vary depending on factors such as the materials used, lubrication, and design parameters. However, compared to other gear systems, worm screw mechanisms tend to have lower efficiency due to inherent friction between the threads and teeth. It’s crucial to ensure that the efficiency of the worm screw mechanism meets the requirements of the specific high torque application.
  3. Load Holding: Another advantage of worm screws is their self-locking property. Due to the helical shape of the threads, the worm screw has a wedging effect on the worm wheel, which provides resistance against backward rotation. This self-locking feature allows worm screws to hold loads in a fixed position without the need for additional braking mechanisms. In high torque applications where load holding is required, worm screws can provide reliable and secure positioning.
  4. Material Selection: The materials used for the worm screw and worm wheel should be carefully selected to withstand high torque loads. Both components should have sufficient strength and wear resistance to handle the transmitted torque without deformation or premature failure. Depending on the specific application requirements, materials such as hardened steel, bronze, or other alloys may be chosen to ensure the durability and performance of the worm screw assembly.
  5. Lubrication and Maintenance: Proper lubrication is crucial for the smooth operation and longevity of a worm screw mechanism, especially in high torque applications. Adequate lubrication helps reduce friction, wear, and heat generation between the contacting surfaces, ensuring efficient torque transfer. Regular maintenance, including monitoring lubricant levels and replenishing or replacing the lubricant as needed, is essential to maintain optimal performance and prevent premature wear or failure.

Overall, worm screws can be effectively used in high torque applications, thanks to their gear reduction capabilities, load-holding properties, and efficient torque transmission. However, it’s important to carefully consider factors such as mechanical efficiency, material selection, lubrication, and maintenance to ensure that the worm screw mechanism can meet the specific requirements and demands of the high torque application.

worm screw

Are there different types of worm screws available?

Yes, there are different types of worm screws available to suit various applications and requirements. The design and characteristics of a worm screw can vary based on factors such as the material used, the thread geometry, the type of worm wheel, and the intended application. Here are some common types of worm screws:

  1. Standard Worm Screws: Standard worm screws are the most commonly used type and are available in a wide range of sizes and materials. They typically have a single-start thread and are made from materials such as steel, stainless steel, or bronze. Standard worm screws are suitable for general-purpose applications where moderate precision and load capacity are required.
  2. Double-Enveloping Worm Screws: Double-enveloping worm screws, also known as hourglass worm screws, have a unique thread profile that improves contact and load distribution between the worm screw and the worm wheel. This design offers enhanced torque transmission, higher efficiency, and increased load-carrying capacity compared to standard worm screws. Double-enveloping worm screws are often used in heavy-duty applications, such as gearboxes and high-load power transmission systems.
  3. Low-Lead Worm Screws: Low-lead worm screws have a smaller thread lead angle compared to standard worm screws. This design reduces the amount of sliding contact between the threads of the worm screw and the teeth of the worm wheel, resulting in lower friction and improved efficiency. Low-lead worm screws are commonly used in applications where high efficiency and reduced heat generation are critical, such as in precision machinery and high-speed gear systems.
  4. Self-Locking Worm Screws: Self-locking worm screws are designed to have a high friction angle between the threads, making them capable of preventing reverse motion or backdriving. This self-locking feature eliminates the need for additional braking mechanisms or external locking devices in certain applications. Self-locking worm screws are commonly used in vertical lift systems, hoists, and other applications where holding the load position is essential.
  5. High-Precision Worm Screws: High-precision worm screws are manufactured to tighter tolerances and have improved accuracy compared to standard worm screws. They are designed to provide precise positioning and motion control in applications where high accuracy and repeatability are required. High-precision worm screws are often used in CNC machines, robotics, and other precision equipment.
  6. Customized Worm Screws: In addition to the standard types mentioned above, worm screws can also be customized to meet specific application requirements. Customized worm screws may involve variations in thread geometry, pitch, diameter, materials, or other parameters to suit unique applications or performance specifications.

The selection of the appropriate type of worm screw depends on factors such as the desired load capacity, efficiency requirements, backlash tolerance, positional accuracy, and environmental conditions. It is important to consult with manufacturers, engineers, or experts familiar with worm screw applications to determine the most suitable type for a specific application.

worm screw

How does a worm screw mechanism work?

A worm screw mechanism, also known as a worm gear mechanism, is a type of power transmission system that consists of a worm screw and a worm wheel. It is designed to transmit motion and power between non-parallel shafts. The mechanism works based on the interaction between the helical threads of the worm screw and the teeth of the worm wheel. Here’s a detailed explanation of how a worm screw mechanism works:

  1. Structure: The worm screw is a cylindrical shaft with a helical thread wrapped around it, resembling a screw. The worm wheel, also known as a worm gear, is a gear with teeth that mesh with the threads of the worm screw. The orientation of the worm screw and the worm wheel is such that the axes of rotation are perpendicular to each other.
  2. Motion Transmission: When the worm screw is rotated, its helical threads engage with the teeth of the worm wheel. As the worm screw rotates, it drives the worm wheel to rotate as well. The helical shape of the worm screw and the teeth of the worm wheel allow for motion transmission perpendicular to the axis of the worm screw.
  3. Gear Reduction: One of the key characteristics of a worm screw mechanism is its ability to provide a significant gear reduction. The helical threads of the worm screw and the meshing teeth of the worm wheel create a high reduction ratio in a single gear stage. This means that a small rotation of the worm screw can result in a substantial rotation of the worm wheel. The gear reduction enables the worm screw mechanism to generate high torque output at the worm wheel.
  4. Self-Locking: A notable feature of the worm screw mechanism is its self-locking property. Due to the helical shape of the threads, the worm screw has a wedging effect on the worm wheel. This means that the worm wheel cannot easily rotate the worm screw. Instead, the worm screw tends to hold its position without the need for additional braking mechanisms. The self-locking feature makes the worm screw mechanism suitable for applications that require holding loads in a fixed position.
  5. Efficiency and Backlash: The efficiency of a worm screw mechanism can vary depending on factors such as the materials used, lubrication, and design parameters. However, compared to other gear systems, worm screw mechanisms tend to have lower efficiency due to inherent friction between the threads and teeth. Additionally, worm screw mechanisms may exhibit a certain amount of backlash, which refers to the slight play or clearance between the threads and teeth. Backlash can affect precision and introduce a small amount of lost motion in the system.
  6. Applications: Worm screw mechanisms find applications in various industries and machinery where motion transmission at right angles and high gear reduction ratios are required. Common applications include conveyor systems, lifting mechanisms, winches, automotive steering systems, robotics, and machine tools.

The worm screw mechanism offers a unique combination of motion transmission, gear reduction, and self-locking capabilities, making it suitable for specific applications where precise control, high torque output, and the ability to hold loads are essential.

China supplier JIS Type Rigging Screws F-3403  China supplier JIS Type Rigging Screws F-3403
editor by CX 2024-04-11

Recent Posts